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Extension of Wheeler-Feynman quantum theory to the 
relativistic domain 11. Emission processes 

P C W DAVIES 
Institute of Theoretical Astronomy, University of Cambridge, Cambridge CB3 OE2. UK 

MS received 26 November 1971 

Abstract. In paper I we examined from the standpoint of the S matrix that inside a light 
tight box the photon propagator D, may be replaced by its real part 6, without change in 
the quantum generalization of the classical absorber theory of Wheeler and Feynman. 

In this paper, we first examine the classical radiation field, clarifying some concepts 
and definitions, then apply the results of I to derive the usual expressions for the real photon 
processes of conventional quantum electrodynamics. 

1. Classical radiation field 

Suppose we solve the wave equation for a point charged particle in arbitrary motion, 
retaining the time symmetry for as long as possible. We can construct two fields which 
are antisymmetric and symmetric under T inversion, respectively 

- 
A = &p+ (1) 

A = & A ‘ e * - A a d v ) .  (2) 
The first field is a solution of the inhomogeneous equation while the second field is source 
free. This field ( A )  has been called (i) the radiation field by Dirac (1938), but our usual 
notion of such a field is a long range (l /R) acceleration (d) field at retarded infinity. But 
in this region the two definitions are the same (ignoring the i), as Aadv = 0. However, 
Dirac’s definition has the advantage that if a” = 0 the radiation field vanishes every- 
where not just at retarded infinity?. Although A is source free, we can envisage both A 
and A as spherical waves converging on the particle from advanced infinity, re-emerging 
and expanding to retarded infinity, the only difference being that A suffers a phase change 
of 71 at the particle world line (see figure 1). If we now superpose both fields, we can 
conform to the various boundary conditions by arranging them either in phase at 

(0) (6) 

Figure 1. (a) The field A ;  (b)  the field A. 

t Because it is a solution of OA = 0. 
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t = - z, giving advanced fields only, or i~ out of phase, at r = - x,, giving retarded 
fields only (see figure 2). Moreover, A can be invariantly decomposed into positive 
( A  +)and negative ( A  -)frequencies, which may be separately phased, to give retarded t 
and advanced - or vice versa. 

Figure 2. Interference 

Consider the decomposition 

A,,, = A + A. ( 3 )  

I t  is often remarked that A gives the far field and A the near ( l /R2.  or velocity) field. 
But this is misleading, because A also has an advanced component, and its retarded 
component is only f the full value. A also has 1/R fields, which give the usual full retarded 
(or advanced) far field by interference with A.  However, for uniform motion (aP = 0). 
the far fields vanish, so A vanishes everywhere. Therefore A will describe the velocity 
fields only. We conclude that the velocity fields are time symmetric?. When we examine 
the action of these fields on the source particle, the A field gives rise to the (divergent) 
selfenergy of the particle, whilst A gives the finite radiative damping force, but both 
fields carry away the radiation which is generated. 

If we now enclose the system in a light tight box outside of which there is no source 
free radiation from infinity, then the total A field vanishes throughout by the usual 
absorber argument. Thus the A field for a particular particle is due to the A field of all the 
other particles collectively interfering, and the converging-diverging A wave discussed 
above can be regarded as the advanced response of the absorber to the particle motions 
(see Wheeler and Feynman 1945 for a careful discussion of this). The vanishing of the 
field A means that it can be removed from our description of the system without changing 
the results for a light tight box. But the removal ofall the free field excitation enables us to 
dispense with the field altogether as an independent mechanical system, for it can only 
mediate the interaction of the particles (through A), and never remove energy and 
momentum to infinity (through A) .  We thus arrive at an action-at-a-distance formalism. 
This is the usual Wheeler-Feynman theory. 

2. Real and virtual photons 

When we quantize the free electromagnetic field, we build up a Fock space out of states 
containing all numbers of photons. These photons obey the relation k 2  = 0. and, by 
the uncertainty principle, have an infinite lifetime. When the field is coupled to Its 
sources, we allow for photons to be created and annihilated. If a photon is created at  
t = 0, and destroyed at t = T. we expect that it will lie off the energy shell (ie that k 2  # 0) 

i However, we cannot detect the advanced (precursor) signals in the velocity field (or Coulomb) u s e ,  because 
of the uncertainty principle (see below) 



Wheeler-Feynman quantum theory 1027 

for finite T. We say that such photons are virtual. However, this simple picture can be 
very misleading and confusing. 

To understand this, we recall the property proved in Davies (1971a, to be referred 
to as I) for the S matrix? 

(OIP exp( -i f J(x)A(x) dx)lO) = P exp J(x)D,(x - y)J(y) dx dy 

where J(x) = Xij(i)(x), i running over all species of particles, and (0) refers to the photon 
vacuum only. The expression on the right hand side of (4) may be used to calculate the 
contributions from all Feynman graphs with internal photon lines only. By taking the 
vacuum photon state we indicate that the system has no real photons at t = F CO, How- 
ever, let us examine the photon propagator DF in detail. A Fourier decomposition gives 

1 
DF(x) = - I (F - inS(k2) 

(27d4 
( 5 )  

= B+D,  (6)  
where PP is the principal part. The D part (bound field) leads to the real principal part 
term which describes virtual photons (k2 # 0), whilst the imaginary D, (free field) 
describes photons with k2 = 0, that is, real photons, through the 6 function term. This 
closely parallels the classical situation, that is, the virtual photons (time symmetric, 
bound field) give rise to the near field, because of the finite lifetime of the virtual photons, 
while the real photons can escape to infinity as the far field. But how do we reconcile the 
notion of a real photon as an internal line in the Feynman diagram with the uncertainty 
principle? In other words, how can a real photon, which ought to have an infinite 
lifetime, be emitted and reabsorbed, as described by the right hand side of (4)? 

The paradox can be resolved by appealing to the classical theory. Just as we can 
never separate the A and A fields, and both of them carry away radiation when a@ # 0, 
so the virtual photons continually interfere with the real photons when we have the 
quantum analogbe of acceleration (ie energy available for the transition). This inter- 
ference leads to both real and virtual photons carrying energy to retarded infinity. It is the 
virtual photons with very small k2 that provide the long range field$. For negative 
times, these virtual photons just cancel the advanced field of the real photons, so that 
for a positive energy source we only have disturbances propagated into the future. We 
can now explain physically how a real photon can be absorbed. We may say that it has 
existed for an infinite time, but the virtual photons have cancelled its advanced effects by 
interference (see figure 2). If we take the lowest order term in e2 in the expansion of (4) 
we obtain a matrix element with a real part (including B )  and an imaginary part (including 
0,) .  The real part gives rise to the selfenergy and level shift, whilst the imaginary part 
gives the level width, or transition rate for real photon emission, in analogy to the 
classical case. 

The whole real/virtual terminology is confused as many authors, such as Feynman, 
call a photon virtual merely if it has a finite lifetime, that is, it is an internal line on a 
Feynman graph. Thus in his book ‘Theory of Fundamental Processes’ Feynman draws 
a diagram like figure 3 and remarks 

t We suppress the vector indices for simplicity. 
$Without appreciating that virtual photons can contribute to radiative effects and produce a far field also, the 
Wheeler-Feynman notion of having virtual photons only is incomprehensible. 
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Earih Hoon 

Figure 3. 

“In a sense every real photon is actually virtual if one looks over sufficiently long 
time scales”. But of course, he does not mean that we should use only the l i k 2  (or 0 )  
part of the propagator, for this would give a (i advanced++ retarded) field. 

If there was no energy source at ‘earth’ so that we could not pick up the k 2  = 0 in 
the 6 function anyway, then this would be correct. However, we cannot separate the 
advanced and retarded signals because of the uncertainty principle. To see this. we 
appreciate that when no energy source is available. the time ATrequired for the emission 
process is related to the frequency of the photon by AT - l/o. That is, in the wave 
zone of the source, we are completely unsure of the order of emission and absorption. 
This order is only well defined in the far zone, but the far field vanishes here. When there 
is an energy source, we also have a real photon contribution from the (5 function. and this 
cancels the advanced signal and reinforces the retarded. The energy provided also 
enables us to remove the uncertainty principle restriction as not being able to measure 
the order of emission and absorption, so that we may certainly say that a signal has been 
sent from earth to moon, rather than vice versa. 

Now we come to the crucial point. If we put the system in a light tight box, we know 
from the classical theory that the free field vanishes. So we may say that there can be no 
real photons inside a box if there are none outside. Then the S(k2)  or D ,  part of the 
propagator can be omitted. We may express this as the following theorem: 

Theorem 2(i) Inside a light tight box all photons are virtual. This is. of course. a 
tautology by Feynman’s definition, but not by ours. for it implies : 

Theorem 2(ii) Inside a light tight box the photon propagator (DF) can be replaced by 
its real part (B).  
Although physically reasonable from the above argument, to prove this we recall the 
discussion in 1. 

Consider the expression (OISStlO). Using equation (4) and unitarity, we have 
(OISS+(O) = 1 so 

The I) indicates summation over fermion states. The lefthand side of (7) is just the total 
transition probability for the emission of 1 ,2 ,3 , .  . . photons (to all orders). We wish to 
demonstrate that when the lefthand side vanishes, we may remove the imaginary D ,  
(real photon) term from the righthand side. Now the emission term will vanish for 
certain restrictive types of fermion states I). One such set of states would be the ground 
states of all atoms, or the set of all free one particle states. In these cases it is well known 
that we may use only the b part of the propagator as the photons can never get on the 
energy shell because of the conservation laws. This is the case when calculating the usual 
van der Waal’s force between ground state atoms, for instance. For our purposes. 
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however, we are interested in the states $ corresponding to a light tight box. In this 
case it is clear that real photons can occur in some terms in S without violating any 
conservation laws, so that individual D ,  terms will contribute. Nevertheless, when we 
take the totality of such terms, we can show that their contributions all cancel by 
interference, so that, provided we consider all the particles of the system (including the 
box), these real photons may be omitted. 

Now for the subset of states $ which preclude emission processes, the submatrix 
given by the last term of (7) is obviously unitary. If the currents J are classical this leads 
to the immediate requirement that the imaginary term in the exponential must vanish. 
For nonclassical currents, the removal of this term renders the integrand hermitean, 
though because of the P operator, even this matrix is not manifestly unitary as in the 
classical case. But we know that for our light tight box states this term must give unity, 
so that the contribution from the D, term, as well as unwanted terms arising from P 
should vanish for these particular states, although it is just possible that they will cancel. 

To exclude this possibility, and to provide a straightforward demonstration that the 
D ,  terms do vanish in this case, we can appeal to the property of the matrix elements 
noted by Feynman (1950). The property is based on the physical notion that when a 
real photon is exchanged, the emission and absorption processes may be considered as 
independent. Mathematically, this is expressed in our ability to factorize the matrix 
element with an internal photon line into the product of two matrices, one depending 
only on the emission variables, the other on the absorption variables. Clearly then, if the 
emission processes have vanishing probability, so do the exchange processes. That is, 
if a real photon cannot be emitted, it obviously cannot be emitted and reabsorbed again. 
In the case of the light tight box, it is clear that if we consider a small region, a real 
photon can be emitted and the argument does not apply, but when we include the whole 
box the argument is valid. This is made clearer if we consider the selfenergy graph 
(figure 4). If we factorize S so that the emission and absorption events at A and B are 
independent, then there is only a real photon contribution to this graph if the emission 
process in figure 5 has nonzero probability. If figure 5 is excluded (eg for a ground state 
atom) then so is the real photon exchange, A +  B. This is none other than the familiar 
unitarity property that the D, (imaginary) part of the selfenergy matrix element is equal 
to the first order emission probability, so that for the ground state the level width is zero. 

BP A 

Figure 4. Selfenergy Figure 5. Emission. 

Now in the case of a light tight box the fermion line in figure 4 represents, not just one 
current, but a very large number ( J  = Xi j,J In this case the selfenergy graph represents 
all conceivable one photon exchange processes inside the box, and it is only when we 
add all these matrix elements together that they cancel by interference to give zero. The 
same considerations apply for any number of internal photon lines. 

In the next section we shall perform the above mentioned factorization of S in detail. 
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3. Real photon matrix elements 

Knowing the matrix elements for processes with internal photon lines we can easilj 
obtain the matrix elements for emission processes from unitarity considerations. Let US 
consider the case of classical currents. Our fundamental form for the S matrix for a 
single current becomes 

which is real and positive, and in Maxwell theory can be identified with the average 
number of emitted photons. S is not unitary, because the action in (8) is complex. I f  
however, we had considered all currents in a light tight box, then S would be unitarq 
because of the absorber condition 

By extracting a single current i from the double summation in (10). we are not taking 
into account interactions with the walls of the box, which are regarded physically in the 
region of i as real photon emission processes. Hence S cannot be unitary. Evident]) 
these omitted processes occur with probability 1 -e-'. This may be written as a perturba- 
tion expansion 

This is the familiar Poisson distribution often discussed in connection with the infrared 
divergence. Each successive term on the righthand side of (10) may be interpreted as 
the emission probability of 1.2.3.. . . photons. 

In his paper Feynman (1950) showed another way to construct matrix elements for 
real photon processes knowing the matrix elements for virtual photons. Remembering 
his definitions this means that we may convert information about internal real photon 
lines to information about external real photon lines by noticing that what is an external 
line in a small region can become an internal line when larger dimensions are considered. 
We know that what happens to a real photon a million miles away does not affect its 
emission process in the laboratory. This physical decoupling of emission and absorption 
processes is reflected in the properties of the S matrix. 

Suppose we have two currents i and j separated by a great distance so that they may 
be considered distinguishable. We write the S matrix as a product of three factors 
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The first two factors of (12) contain operators referring respectively to the currents i and 
j only. Expanding this term to lowest order in e2, and abbreviating the first two terms 
in an obvious way, we have (reinstating the vector indices for clarity) 

p ele[z) e'zl,)i J" dx dy. 

Expanding the D, function in Fourier components gives 

expjik. (x-y)-iolxo-yol} 
D,(X - y )  = i 1 

k 2wQ 

Now i and j are well separated physically, so we may decide that, say i is emitting radiation 
and j receiving it. Then xo < yo and we may remove the modulus sign from the exponent 
of (14). This fact enables us to factorize (14) into two parts 

We can interpret the sum over k as a sum over intermediate states for which we must 
specify a momentum k. Furthermore, we may factorize the gpv 

4 

where the e are othornomal basis vectors, so that these states must also be specified 
by a polarization index i. We are thus led to invent photons of momentum k and 
polarization ,I in trying to represent the effect of the past (the current i) on the future 
(the current j ) .  

We may see this clearly by returning to (14). Removal of the modulus sign changes 
D ,  to - D -  . Inserting this in (13) gives 

Now we may formally invent operators A,(x), A,(y) such that 

(OI4(y)A,(x)lO) = 1D-k - Y)S," (18) 
which is, of course, the usual rule for the photon operators. The lefthand side of (18) 
factorizes immediately 

where we have invented intermediate states containing one photon of momentum k and 
polarization i. 

Substituting (19) into (17) allows the separation 

In (20) we may let the P operators act separately on the currents i and j as they are 
distinguishable. Expression (20) may be written symbolically as Sisi, where the first 
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factor depends only on the current i and the second only on j. To accomplish this we 
have had to invent a photon Hilbert space complete with operators which obey the 
usual rules of the electromagnetic field operators. 

To investigate higher order processes, consider further terms in the expansion of (12). 
The nth order term is 

c . . '  c __ (7 ' ) * p  eiz(8)  e l x ( i l  j.. , / j f iJ(.x]).  . ./:J(x~~) 
k l . f . 1  k,.?.,, ' I !  

(Ol )I kl,.  I ) ( k 1 1 1 1  1 ) i o )  ' ' ' ( O I A p ( L ' n ) /  k,,j."> ( k,,;.nl A n ( x n ) l o )  

xjtjj(jsl). . .Jfjl(y,,) dx, . . . dx, dy, . . . djs,. (21)  

If we interpret each k ,  E, as a photon in the n fold summation of (21). then there are n 
ways of labelling the IZ different values of k in the n summations corresponding to n 
distinguishable photons, and this just cancels the l /n!  in (21). However, if k is the same 
for all n photons there is only one term and we would say that identical photon states 
contribute a statistical weight of only l /n !  to the scattering amplitude. This is the rule 
of Bose statistics. If there are r identical photons among them, these may be chosen in 
n ! / (n  - r ) ! r  ! different ways. The remaining (n  - 1') summations may be used to label the 
k values in ( n - r ) !  ways. We thus have a factor n ! h !  which cancels the l /n!  in (21) to 
give l/r!. 

Extracting the emission matrix element from (21) as a factor then gives 

< k,,.,,IAo(.Y~t)Io) dx]  ' ' ds,, ' (22)  

We can now write the product of matrix elements of A as a single matrix element using 
the usual rules of creation and annihilation operators. That is, (22) may be written 

where is a normal ordering operator introduced to ensure that only one matrix 
element contributes, Or denotes the final state of n photons with P identical, 0 denotes 
the photon vacuum. The A may be expanded in creation and annihilation operators 

where the j ;  are c number functions. These operators have the property 

(a:)'IO) = ( r ! ) l  211) .  ( 2 5 )  

Therefore, use of the matrix element in (23) gives rise to a permutation factor of n! , '~ ' !  
as before because of the summation in (24). I t  also involves an additional ( r ! ) '  from (25) 
for the r identical photons. Thus, in making the change from (22) to (23) we must divide 
by a factor n!/(r!)1'2, which gives the l /n !  in (23). 

Expression (23) is clearly the matrix element of the nth term of the exponential 
operator 
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which is the usual S matrix for all electrodynamic processes including emission and 
absorption of real photons (see, for example, Akhiezer and Berestetskii 1965, p 302 for 
reduction of S to this form). Note that we require N ,  to act only on the A,  to ensure 
that we will obtain nonzero matrix elements between 10) and In) only from the nth term 
in the expansion of (26). 

If we wish to discuss processes involving both absorption and emission of photons, 
we may include three currents in the S matrix, and perform the same separation of 
emission and absorption as above, only extracting the other (absorption) factor from 
(22) for the incoming photons together with (23) for the outgoing photons. Or we could 
treat the incoming photons directly in a semiclassical way (see, for example, Hoyle and 
Narlikar 1969). In all cases we will arrive at an expression formally identical to a 
matrix element of terms in the expansion of (26). The discussion provides a nice illustra- 
tion of how we can dissect Feynman graphs. 

4. Irreversibility 

Up to this point the discussion of radiative effects is perfectly symmetrical in time. This 
is reflected in the fact that the photon propagator D, is symmetric under time reversal. 
Physically, we know that for a single photon exchange between two particles, the 
reversal of time direction merely interchanges the roles of emitter and absorber, and 
describes an equally probable physical situation. The process is shown in figure 6, 

Figure 6. 

which is invariant under rotation through 180". This is a consequence of the well known 
time reversal invariance of electrodynamics. However, we know that certain radiative 
processes are irreversible. In Wheeler-Feynman theory this irreversibility arises 
naturally from the thermodynamical properties of the absorber, whereas it has no 
explanation in Maxwell theory. If we imagine particle B in figure 6 to be replaced by a 
large number of absorbing atoms initially in their ground states, then the energy from the 
emitter is gradually dispersed through these atoms in an irreversible way. The reverse 
situation, in which a large number of atoms make a coherent series of emissions is highly 
improbable (except by manipulation, as in the case of the maser). In the classical 
Wheeler-Feynman theory, we reach the retarded potential by adding the response field 
due to the total collection of absorbing particles which behave irreversibly in accordance 
with the laws of thermodynamics. Inside a box in thermal equilibrium coherence is 
destroyed and radiative processes behave reversibly. The universe is prevented from 
reaching this condition by the cosmological expansion. 
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In the quantum theory we also distinguish between positive and negative frequencies. 
In Maxwell theory, only positive frequency photons are allowed to propagate into the 
future, as the electromagnetic field has positive definite energy density. In Wheeler- 
Feynman theory, we could equally well subtract the quantity D, from lr to arrive at Dg 
rather than D,. This would correspond to negative frequencies being propagated for- 
wards in time and would lead to a situation depicted by figure 7. It is important to 
realize that this is not the time reversal of figure 6. It is in fact an equally reversible 
situation. It seems to be ruled out by the properties of the absorber atoms, which are 
nearly all in their ground states. A fuller discussion of these topics can be found in 
Davies (1971b). 

Figure 7. 

Consider the case of two identical atoms well separated, one of them excited. the 
other in the ground state. Then we expect that the energy be transferred from one 
atom to the other in a characteristic time. The situation is perfectly reversible though, 
because there is only one initial and one final state. The energy will just oscillate between 
the two atoms (see, for example, Feynman and Hibbs 1965-we ignore the possibility 
that the atoms may radiate). If we replace the acceptor atom by a large number of 
similar systems so that we have a narrow band of final state energies, then we expect an 
irreversible transfer of energy to the group of final states. If the donor and acceptor 
systems are well separated we should regard the process as emission of a real photon. 
This is how we account for radiation in Wheeler-Feynman theory. Now the phases of 
the real and imaginary parts of the photon propagator D, are correlated as described 
in 4 1. Moreover, all frequencies k are systematically phased with respect to each other. 
Thus, for a two particle system, when we take the probability I(S)l2, we will have interfer- 
ence terms between differing frequencies k .  This is the usual situation with scattering. 
However, in the many particle situation described above, each two particle interaction 
will have its own phase. When we work out the transition probability, we have to add 
together the amplitudes that the system will make a transition to all final states with 
energies in our narrow band. But each frequency k in the band corresponds to a different 
two particle interaction (ie a different acceptor atom) and will be randomly phased with 
respect to each other. Hence there are no cross terms in the summation when we take 
l(S>I2. That is, we may just add together probabilities rather than amplitudes. This is 
the usual situation with emission processes, but in the Maxwell theory the field oscil- 
lators are randomized as a separate assumption. 

In quantum mechanics, obtaining a probability corresponds to making a measure- 
ment. The above analysis then suggests that the irreversibility of quantum measurement 
theory is closely connected with the thermodynamical and cosmological situation 
through the absorber. A careful examination of the connection between the microscopic 
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quantum system, and the irreversible cosmological system in this respect might lead to 
a better understanding of some of the logical difficulties at the foundation of quantum 
mechanics and measurement theory. 

5. Conclusion 

Define the S matrix in the interaction picture to be 

where J is the action operator of the interaction. Then conventional quantum electro- 
dynamics (QED) asserts 

J = 1 j5)(x)Ap(x)dx. 
i s 

We have shown that the hermitean expression (28) may be replaced by the nonhermitean 
expression 

without change in the results for internal (virtual) photons. We may also use (29) to 
recover the matrix elements for real photon processes, such as emission, when we take 
into account an ultimate source and absorber of the radiation. All these results were 
proved by Feynman (1950) and have now been verified in S matrix theory. In this 
picture we could do away with the photons altogether if it were not for the pole in the 
propagator of D,. This is an expression of the fact that we can still have a real (though 
internal) photon, and hence (as can be seen from unitarity considerations) the system is 
capable of emitting a real photon. Physically, this is because we cannot be sure that all 
photons emitted are subsequently absorbed unless we enclose the system in a light tight 
box. If this is done and all particles in the box are included in the matrix elements, we 
find that the pole in D, is removed by cancellation of contributions from the box. We 
can therefore replace D ,  with D. That is, we may still describe all QED processes correctly, 
but with truly virtual ( k 2  # 0) photons only. However, virtual photons are coherent, and 
always tied by the source currents. They may therefore be eliminated as an auxiliary 
concept, and we arrive at a truly direct intercurrent action theory with no photons, 
mediated by the D Green function. This then represents the quantum generalization of 
the classical Wheeler-Feynman absorber theory, although it is puzzling that S is not 
unitary for all fermion states in this case (it is, of course, unitary for the light tight box). 

The question of whether or not the universe as a whole behaves like a light tight box 
is debatable, and a question of cosmology. Should this not prove the case, then the work 
is still of some academic interest since it tells us something of the structure of QED. 

The original motivation for a direct interparticle action theory of electrodynamics 
was the elimination of the selfenergy divergences which plague the conventional theory. 
It does not seem possible to quantize the divergent free classical theory in a meaningful 
way without re-introducing a form of selfaction. However, with the photon propagator 
now relegated to the role of a potential, we are free to modify it without deriving the 
modification from the dynamics of the Maxwell field. Progress in removing divergences 
has recently been made by Sudarshan (1971) and Hoyle and Narlikar (1971). 
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Perhaps the most useful outcome of this work is a clearer understanding of the way in 
which the nature of real and virtual photons is interwoven with the distant absorber. If 
we accept the full Wheeler-Feynman philosophy, we would take the following attitude 
towards QED. That the cosmological structure of the universe allows us to add a pole to 
the Green function B permitting it to be interpreted as a propagator of independent 
mechanical particles called photons. Even if we do not accept this in full, the theory 
perhaps contributes to our understanding of the ways in which the large scale properties 
of the universe can affect the structure of local physical laws. 
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